Phase-dependent stimulation effects on bursting activity in a neural network cortical simulation.
نویسندگان
چکیده
PURPOSE A neural network simulation with realistic cortical architecture has been used to study synchronized bursting as a seizure representation. This model has the property that bursting epochs arise and cease spontaneously, and bursting epochs can be induced by external stimulation. We have used this simulation to study the time-frequency properties of the evolving bursting activity, as well as effects due to network stimulation. METHODS The model represents a cortical region of 1.6 mm x 1.6mm, and includes seven neuron classes organized by cortical layer, inhibitory or excitatory properties, and electrophysiological characteristics. There are a total of 65,536 modeled single compartment neurons that operate according to a version of Hodgkin-Huxley dynamics. The intercellular wiring is based on histological studies and our previous modeling efforts. RESULTS The bursting phase is characterized by a flat frequency spectrum. Stimulation pulses are applied to this modeled network, with an electric field provided by a 1mm radius circular electrode represented mathematically in the simulation. A phase dependence to the post-stimulation quiescence is demonstrated, with local relative maxima in efficacy occurring before or during the network depolarization phase in the underlying activity. Brief periods of network insensitivity to stimulation are also demonstrated. The phase dependence was irregular and did not reach statistical significance when averaged over the full 2.5s of simulated bursting investigated. This result provides comparison with previous in vivo studies which have also demonstrated increased efficacy of stimulation when pulses are applied at the peak of the local field potential during cortical after discharges. The network bursting is synchronous when comparing the different neuron classes represented up to an uncertainty of 10 ms. Studies performed with an excitatory chandelier cell component demonstrated increased synchronous bursting in the model, as predicted from experimental work. CONCLUSIONS This large-scale multi-neuron neural network simulation reproduces many aspects of evolving cortical bursting behavior as well as the timing-dependent effects of electrical stimulation on that bursting.
منابع مشابه
Effects of Cortical and Peripheral Electrical Stimulation on Brain Activity in Individuals with Chronic Low Back Pain
Purpose: Neuroscience studies suggest that Chronic Low Back Pain (CLBP) is associated with central sensitization, and maladaptive reorganization of the brain; this introduced a new target for LBP treatment. Studies revealed that cortical and peripheral electrical stimulation can be beneficial in regulating brain neuronal activity. However, there is a scarcity of evidence to support the effects ...
متن کاملThe Neuroprotective Effects of Long-Term Repetitive Transcranial Magnetic Stimulation on the Cortical Spreading Depression-induced Damages in Rat’s Brain
Introduction: Cortical Spreading Depression (CSD) is a propagating wave of neural and glial cell depolarization with important role in several clinical disorders. Repetitive Transcranial Magnetic Stimulation (rTMS) is a potential tool with preventive treatment effects in psychiatric and neuronal disorders. In this paper, we study the effects of rTMS on CSD by using behavioral and histological a...
متن کاملGamma Rhythmic Bursts: Coherence Control in Networks of Cortical Pyramidal Neurons
Much evidence indicates that synchronized gamma-frequency (20-70 Hz) oscillation plays a significant functional role in the neocortex and hippocampus. Chattering neuron is a possible neocortical pacemaker for the gamma oscillation. Based on our recent model of chattering neurons, here we study how gamma-frequency bursting is synchronized in a network of these neurons. Using a phase oscillator d...
متن کاملEmergent bursting and synchrony in computer simulations of neuronal cultures
Experimental studies of neuronal cultures have revealed a wide variety of spiking network activity ranging from sparse, asynchronous firing to distinct, network-wide synchronous bursting. However, the functional mechanisms driving these observed firing patterns are not well understood. In this work, we develop an in silico network of cortical neurons based on known features of similar in vitro ...
متن کاملPhase-Dependent Modulation of Signal Transmission in Cortical Networks through tACS-Induced Neural Oscillations
Oscillatory neural activity is considered a basis of signal transmission in brain networks. However, the causal role of neural oscillations in regulating cortico-cortical signal transmission has so far not been directly demonstrated. To date, due to methodological limitations, studies on the online modulatory mechanisms of transcranial alternating current stimulation (tACS)-induced neural oscil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Epilepsy research
دوره 84 1 شماره
صفحات -
تاریخ انتشار 2009